Biological					
Component	Symbol	Units	Equation		
Chemical	C _B	pg/kg WW	$C_B = \{k_1*(m_O*C_{WD}+m_P*C_{WD.P}) + k_D*$		
concentration in			$\Sigma Pi^*C_{D,i}$ /($k_2+k_E+k_C+k_M$)		
the organism			Equation 1		
Chemical	C _{D,i}	pg/kg ww	same as above; included to indicate that the		
concentration in			general equation is also used to estimate		
prey item <i>i</i>			chemical concentrations in prey species		
			Equation 1		
Organism-water	K _{BW}	unitless	$K_{BW}=k_1/k_{2=}V_{LB}*K_{OW}+V_{NP}*\beta*K_{OW}+V_{WP}$		
partition coefficient			·		
on a wet weight basis			Equation 2		
Rate constant for	k ₁	L/kg/day	$k_1 = E_w * G_v / W_B$		
aqueous uptake (fish,					
invertebrates and			Equation 4		
zooplankton)					
Gill ventilation rate	G _V	L/d	$G_V = 1400*W_B^{0.65}/C_{OX}$		
			Equation 5		
Respiratory surface	E _w	unitless	$E_w = (1.85 + (155/K_{ow}))^{-1}$		
chemical uptake					
efficiency			Equation 7		
Rate constant for	k ₁	L/kg/day	$k_1 = (A+(B/K_{ow}))^{-1}$		
aqueous uptake					
(algae, phytoplankton			Equation 8		
and aquatic					
macrophytes)					
Rate constant for	k ₂	day ⁻¹	$k_2 = k1/K_{BW}$		
chemical elimination					
via the respiratory			Equation 9		
area (gill)					
Phytoplankton-water	K _{PW}	unitless	$K_{PW} = V_{LP} * K_{OW} + V_{NP} * 0.35 * K_{OW} + V_{WP}$		
partition coefficient					
on a wet weight basis			Equation 10		
Rate constant for	k _D	kg food/kg	$k_D = E_D * G_D / W_B$		
chemical uptake via		organism/day			
ingestion and			Equation 11		
digestion of food and					
water	1_				
Dietary chemical	E _D	unitless	$E_D = (3.0*10^{-7}*K_{OW}+2.0)^{-1}$		
transfer efficiency	1	1	Equation 12		
Feeding rate - other	G _D	kg/d	$G_D = 0.022*W_B^{0.85*}e^{(006*T)}$		
species	<u> </u>	1	Equation 13		
Feeding rate - filter-	G _D	kg/d	$G_D=G_V*C_s*\sigma$		
feeders			Equation 14		

Table B-3: Arnot & Gobas Equations					
Component	Symbol	Units	Equation		
Rate constant for chemical elimination via excretion into egested feces	k _E	day ⁻¹	$k_E = G_F * E_D * K_{GB} / W_B$ Equation 15		
Partition coefficient of the chemical between the contents of the gastrointestinal tract and the organism	K _{GB}	unitless	$K_{GB} = (v_{LG}*K_{OW}+v_{NG}*\beta*K_{OW}+v_{WG})/$ $(v_{LB}*K_{OW}+v_{NB}*\beta*K_{OW}+v_{WB})$ Equation 16		
Fecal egestion rate	G _F	kg/d	$G_F = \{ (1-\delta_L)^* V_{LD}) + (1-\epsilon_L)^* V_{ND} + (1-\epsilon_N)^* V_{WD} \}^* G_D$ Equation 17		
Lipid fraction of gut contents	V _{LG}	kg lipid/kg digesta ww	$v_{LG} = (1-\epsilon_L)^* v_{LD} / [(1-\epsilon_L)^* v_{LD} + (1-\epsilon_N)^* v_{ND} + (1-\epsilon_W)^* v_{WD}]$ Equation 18		
NLOM fraction of gut contents	V _{NG}	kg NLOM/kg digesta ww	$v_{NG} = (1-\varepsilon_L)^* v_{ND} / [(1-\varepsilon_L)^* v_{LD} + (1-\varepsilon_N)^* v_{ND} + (1-\varepsilon_W)^* v_{WD}]$ Equation 19		
Water fraction of gut contents	V _{WG}	kg water/kg digesta ww	$\begin{aligned} v_{WG} = & (1-\epsilon_L)^* v_{WD} / [(1-\epsilon_L)^* v_{LD} + (1-\epsilon_N)^* v_{ND} + (1-\epsilon_W)^* v_{WD}] \\ & \epsilon_W)^* v_{WD}] \\ & \text{Equation 20} \end{aligned}$		
Rate constant for growth of aquatic organisms	k _G	day ⁻¹	K _G = 0.0005 x W _B -0.2 Equation 21		
Rate constant for metabolic transformation of chemical	k _M	day ⁻¹	Metabolism of PCB and DDE are not expected to be significant for application of the model to Portland Harbor. Estimates for k _M were, however, identified in the model calibration process		
Overall lipid content of the diet	V _{LD}	kg lipid/kg food ww	$v_{LD} = \sum P_i^* v_{LB,i}$ Total dietary lipid		
Overall NLOM content of the diet	V _{ND}	kg NLOM/kg food ww	$v_{ND} = \sum P_i^* v_{NB,i}$ Total dietary non-lipid organic matter		
Overall water content of the diet	V _{WD}	kg water/kg food ww	$v_{WD} = \Sigma P_i^* v_{WB,i}$ Total dietary water		
Chemical					
Component	Symbol	Units	Equation		
Bioavailable Solute Fraction	ф	unitless	ϕ =1/(1+ χ _{POC} * D _{POC} * α _{POC} * K _{OW} + χ _{DOC} * D _{DOC} * α _{DOC} * K _{OW}) Equation 3		
Dissolved oxygen concentration of water (RM 2 to RM 11)	Сох	mg 0₂/L	C _{OX} = (-0.24*T+14.04)*0.9 Equation 6		

Table B-3: Arnot & Gobas Equations					
Component	Symbol	Units	Equation		
Freely dissolved	C _{WD,P}	ng/L	$C_{WD,P} = C_{S,OC} * \delta_{OCS} / K_{OC}$		
chemical					
concentration in the			Equation 22		
pore water					
Chemical	C _{s,oc}	pg/kg dw OC	$C_{S,OC} = C_S/OC_{Sed}$		
concentration in					
the sediment, organic			Equation 23		
carbon normalized					
Freely dissolved	C _{WD}	ng/L	$C_{WD} = C_{WT} * \phi$		
chemical					
concentration in the			(See Equation 1)		
water (total PCBs as					
congeners and 4,4'-					
DDE)					
Organic carbon-water	Log Kqc	unitless	$Log K_{OC} = Log_{10}(0.35 * 10^{Log Kow})$		
partition coefficient					
(total PCBs as Aroclors					
and 4,4'-DDE)					